

2020 World Conference on Lung Cancer Singapore wclc2020.IASLC.com | #WCLC20 CONQUERING THORACIC CANCERS WORLDWIDE

IMpower133: exploratory analysis of maintenance therapy in patients with extensive-stage small cell lung cancer

Martin Reck,¹ Leora Horn,² Tony S. K. Mok,³ Aaron S. Mansfield,⁴ Richard De Boer,⁵ Gyorgy Losonczy,⁶ Shunichi Sugawara,⁷ Rafal Dziadziuszko,⁸ Maciej Krzakowski,⁹ Alexey Smolin,¹⁰ Maximilian Hochmair,¹¹ Marina Garassino,¹² Gilberto Castro,¹³ Helge Bischoff,¹⁴ Andres Cardona,¹⁵ Stefanie Morris,¹⁵ Stephen V. Liu¹⁶

¹ Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany; ² Vanderbilt University Medical Center, Nashville, TN, USA; ³ The Chinese University of Hong Kong, Hong Kong; ⁴ Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA; ⁵ Peter MacCallum Cancer Centre, Melbourne, Australia; ⁶ Semmelweis Egyetem ÁOK, Budapest, Hungary; ⁷ Sendai Kousei Hospital, Sendai, Japan; ⁸ Medical University of Gdansk, Gdansk, Poland; ⁹ Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ¹⁰ Burdenko Main Military Hospital, Moscow, Russia; ¹¹ Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Vienna North Hospital – Klinik Floridsdorf, Vienna, Austria; ¹² Thoracic Oncology Unit, Instituto Nazionale dei Tumori, Milan, Italy; ¹³ Instituto de Cancer do Estado de São Paulo, Hospital das Clínicas da FMUSP, São Paulo, Brazil; ¹⁴ Thoraxklinik Heidelberg gGmbH – Universität Heidelberg, Heidelberg, Germany; ¹⁵ F. Hoffmann-La Roche Ltd, Basel, Switzerland; ¹⁶ Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA

- Dr Reck has the following relationships to disclose:
 - Honoraria for lecture and consultancy: AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, Lilly, Merck, MSD, Novartis, Pfizer, Roche/Genentech, Mirati, Samsung
 - Grants and non-financial support: Roche/Genentech

Background

- Several immunotherapies are the subject of investigation in patients with ES-SCLC¹
- Studies of immunotherapy maintenance in patients with ES-SCLC who have completed chemotherapy only have not shown improvement in survival outcomes^{2,3}
- In the Phase I/III IMpower133 study, atezolizumab + CP/ET followed by maintenance therapy with atezolizumab led to significant improvement in OS and PFS vs placebo + CP/ET⁴
- In this exploratory analysis, we assessed the benefit of atezolizumab vs placebo in the patients who reached the maintenance phase of IMpower133

IMpower133: OS in the ITT population⁴

CP/ET, carboplatin + etoposide; ES-SCLC, extensive-stage small cell lung cancer. 1. Saltos A, et al. *Front Oncol* 2020;10:1074; 2. Gadgeel SM, et al. *J Thorac Oncol* 2018;13:1393-99; 3. Owonikoko TK, et al. ESMO 2019 [abstract 683]; 4. Horn L, et al. *N Engl J Med* 2018;379:2220-9.

Methods

IMpower133 study design

Maintenance population: patients who received at least the first dose of maintenance therapy, regardless of the number of chemotherapy cycles received

- A generalised linear model was used to identify patient and disease characteristics that could be prognostic or predictive of reaching the maintenance phase
- A multivariate Cox model from the start of maintenance treatment was used to evaluate the treatment effect on OS and PFS to account for potential lead-time bias

Atezolizumab, 1200 mg IV, day 1; carboplatin, AUC 5 mg/mL/min IV, day 1; etoposide, 100 mg/m² IV, days 1-3. NCT02763579. Data cutoff: 24 April 2018.

Baseline characteristics in the maintenance population

	Maintenance population (n=318)			
Characteristic ^a	Atezolizumab + CP/ET (n=154)	Placebo + CP/ET (n=164)		
Age, median (range), y	64 (38-90)	63 (26-83)		
Male, n (%) ^b	101 (65)	107 (65)		
ECOG PS 0, n (%) ^b	61 (40)	65 (40)		
ECOG PS 1, n (%) ^b	93 (60)	99 (60)		
Current/previous tobacco use, n (%)	150 (97)	162 (99)		
LDH >ULN, n (%) ^c	85 (56)	87 (53)		
Median SLD (range), mm	113 (12-325)	104 (15-353)		
≥3 metastatic sites, n (%)	110 (71)	111 (68)		
Presences of brain metastases, n (%) ^b	11 (7)	14 (9)		
Received 4 cycles of CP/ET, n (%)	152 (98)	161 (99)		

• Baseline characteristics were balanced between arms in the maintenance population

LDH, lactate dehydrogenase; SLD, sum of the longest diameters; ULN, upper limit of normal.

^a At time of randomisation. ^b Per interactive voice/web response system. ^c Three missing values in the atezolizumab + CP/ET arm (n=151). Data cutoff: 24 April 2018.

Likelihood of reaching maintenance phase

		<i>P</i> value		
Covariate ^a	Odds ratio	Main effect	Interaction	
Treatment comparison (atezolizumab [ref] vs placebo)	0.759	0.261		
Sex (male [ref] vs female)	1.086	0.747	0.708	
Age (10-year increase) ^b	0.459	0.001	0.004	
ECOG PS (1 [ref] vs 0) ^c	0.439	0.004	0.473	
LDH (>ULN [ref] vs ≤ULN)	0.589	0.053	0.167	
SLD (10-mm increase)	0.980	0.257	0.607	
No. of metastatic sites (1-site increase)	1.013	0.896	0.618	
Presence of brain metastases (yes [ref] vs no)	0.951	0.910	0.321	

- Main effects and interactions were modeled separately using generalised linear models
- Age, ECOG PS and LDH were identified as prognostic factors for the likelihood of reaching the maintenance phase
- A significant treatment interaction was also seen with age

Ref, reference; SLD, sum of the longest diameters; ULN, upper limit of normal.

^a ECOG PS, sex and presence of brain metastases determined per interactive voice/web response system. ^b Older patients were less likely to reach the maintenance phase than younger patients. ^c ECOG PS 1 patients were less likely to reach the maintenance phase than ECOG PS 0 patients. Data cutoff: 24 April 2018.

OS in the maintenance population

Placebo + CP/ET 164 164 164 164 163 154 145 131 118 103 89 75 55 32 25 20 13 8 3 3 2 2

1

1

	100 – 90 – 80 –		The address of the second		Atezolizumab + CP/ET (n=154)	Placebo + CP/ET (n=164)	
70 - 60 - % 50 - 40 - 30 -	70 – 60 –		A A A A A A A A A A A A A A A A A A A		OS HR ^a from start of maintenance (95% CI)	0.59 (0.43, 0.81)	
	50 - 40 - 30 -		۱ ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	^{••••} ••••••••••••••••••••••••••••••••	Median OS from start of maintenance (95% CI), mo	12.5 (9.0, 14.5)	8.4 (7.0, 9.4)
	20 - 10 -		I I I I	Median OS from randomisation (95% CI), mo	15.7 (12.3, 17.6)	11.3 (10.1, 12.2)	
	0 –	0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 Months	5 16 17 18 19 20 21 22 23 24			
No. izumab +	at Risk CP/ET	154 154 154 154 1	154 150 138 127 118 110 97 84 70 55 43 32	2 20 11 5 3 2 1			

• Among patients in the maintenance population, median OS was longer in the atezolizumab + CP/ET vs placebo + CP/ET arm

^a Covariates used in the multivariate model: ECOG PS, LDH, SLD, age, number of metastatic sites, sex and presence of brain metastases. Grey dotted line represents approximate start of maintenance therapy. Data cutoff: 24 April 2018.

Atezol

PFS in the maintenance population

• Among patients in the maintenance population, median PFS was longer in the atezolizumab + CP/ET vs placebo + CP/ET arm

^a Covariates used in the multivariate model: ECOG PS, LDH, SLD, age, number of metastatic sites, sex and presence of brain metastases. Grey dotted line represents approximate start of maintenance therapy. Data cutoff: 24 April 2018.

Safety summary in the maintenance population

	From randomisation (indu	ction and maintenance)	From start of maintenance ^a		
n (%)	Atezolizumab + CP/ET (n=155)	Placebo + CP/ET (n=163)	Atezolizumab + CP/ET (n=155)	Placebo + CP/ET (n=163)	
Patients with ≥1					
Any AE	155 (100)	159 (98)	127 (82)	118 (72)	
Treatment-related AE	151 (97)	153 (94)	76 (49)	61 (37)	
Atezolizumab/placebo	100 (65)	86 (53)	64 (41)	41 (25)	
Grade 3/4 AE	105 (68)	105 (64)	43 (28)	37 (23)	
Treatment-related Grade 5 AE	0	1 (<1)	0	1 (<1)	
Serious AE	52 (34)	47 (29)	24 (15)	19 (12)	
AE leading to dose modification or interruption	111 (72)	100 (61)	30 (19)	17 (10)	
Atezolizumab/placebo	96 (62)	85 (52)	28 (18)	17 (10)	
Immune-related AE	64 (41)	46 (28)	41 (26)	24 (15)	

^a Any, Grade 3/4, serious and immune-related AEs previously reported in Mansfield AS, et al. Annal Oncol. 2020;31:310-7. Data cutoff: 24 April 2018.

Presented by: Dr Martin Reck

Immune-related AEs in the maintenance population

	From randomisation (induction and maintenance)				From start of maintenance ^a			
	Atezolizumab + CP/ET (n=155)		Placebo + CP/ET (n=163)		Atezolizumab + CP/ET (n=155)		Placebo + CP/ET (n=163)	
n (%) ^ь	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Rash	34 (22)	3 (2)	19 (12)	0	21 (14)	2 (1)	6 (4)	0
Hypothyroidism	24 (16)	0	1 (<1)	0	16 (10)	0	1 (<1)	0
Pneumonitis	3 (2)	1 (<1)	5 (3)	2 (1)	1 (<1)	1 (<1)	5 (3)	2 (1)
Pancreatitis	1 (<1)	1 (<1)	2 (1)	2 (1)	0	0	2 (1)	2 (1)

• Grade 3/4 immune-related AEs were not commonly reported; no Grade 5 immune-related events occurred

^a Any grade immune-related AEs previously reported in Mansfield AS, et al. Annal Oncol. 2020;31:310-7.

^b Events of any grade occurring in ≥10% of patients and Grade 3/4 events occurring in ≥1%. Data cutoff: 24 April 2018.

- In IMpower133, a similar proportion of patients received maintenance treatment in the atezolizumab + CP/ET (77%) and placebo + CP/ET (81%) arms, as evidenced by the overlapping 95% CIs
- There was an OS and PFS benefit in the maintenance population in patients receiving atezolizumab + CP/ET vs placebo + CP/ET
 - This effect was analysed with a multivariate Cox model from the start of maintenance therapy
 - OS HR, 0.59 (95% CI: 0.43, 0.81); PFS HR, 0.64 (95% CI: 0.50, 0.82)
- Three prognostics factors for reaching the maintenance phase were identified (generalised linear model): age, ECOG PS and LDH; age appeared to show a trend for treatment interaction
- Safety results were comparable between treatment arms despite the continuation of atezolizumab monotherapy in the maintenance phase
- Both induction treatment with atezolizumab + CP/ET as well as maintenance treatment with atezolizumab appear to contribute to the OS benefit observed in IMpower133

Acknowledgements

- The patients and their families
- The investigators and clinical study sites
- This study is sponsored by F. Hoffmann-La Roche Ltd
- Medical writing support for this poster was provided by Kia C. E. Walcott, PhD, of Health Interactions and funded by F. Hoffmann-La Roche Ltd